WRITE for ATol ADVERTISE MEDIA KIT GET ATol BY EMAIL ABOUT ATol CONTACT US
Asia Time Online - Daily News
             
Asia Times Chinese
AT Chinese



    South Asia
     May 1, 2010
Page 1 of 2
India's space program takes a hit
By Peter J Brown

In mid-April, the Indian Space Research Organization (ISRO) tested a large, multi-stage rocket which was equipped with a new cryogenic engine that had been designed and developed by Indian engineers.

Roughly five minutes into this third development flight, the Geosynchronous Satellite Launch Vehicle (GSLV-D3) suffered a third-stage ignition failure and as a result of the malfunctioning launch vehicle, the GSAT-4 communications and navigation satellite on board was lost.

ISRO could do not dismiss or evade the media onslaught that ensued.

"After the unsuccessful flight, the ISRO chairman, K Radhakrishnan, initially suggested that two small cryogenic

 

steering engines, which swivel to maintain the rocket's orientation, might have malfunctioned. Later, however, he indicated that the main cryogenic engine itself might not have ignited. In such a complex system as the cryogenic stage, even a small defect that escapes attention is sufficient to doom the flight," The Hindu declared on its editorial page, for example. "But the space agency would be unwise to confine its analysis to problems encountered with the indigenous cryogenic stage. This is an opportunity for a thorough examination of the entire GSLV rocket and its past five flights. There have, for instance, been problems with the Vikas liquid-propellant engine in previous flights. The procedures for the manufacture, assembly, and pre-flight testing of all liquid propellant engines and stages need particular attention. A comprehensive review would best ensure the future reliability of the GSLV." (1)

Over the last two to three years, the total space budget allocated to India's Department of Space has been growing at a rate greater than any of the other major space faring countries. The latest increase from 2009 to 2010 was approximately 35% - from 41.67 billion Indian rupees (US$934 million) to 57.78 billion rupees this year, just over $1.1 Billion. (2) While this huge spike in funding seems impressive on a percentage basis, it is worth noting that the US National Aeronautic and Space Administration's budget, for example, exceeds $18 Billion in 2010.

Still, this budgetary surge translates quickly into political pressure from Delhi to perform flawlessly, and certainly does not make this latest incident any easier to digest at ISRO headquarters.

The GSLV-D3 was launched from ISRO's Satish Dhawan Space Center, which occupies an island located off India's spectacular southeast coast in Andhra Pradesh.

The exact cause of the failure is still unknown. ISRO has spent years, indeed decades, working on cryogenic rocket technology in an attempt to match the satellite launch capabilities of top-tier space faring nations. The Europeans, Russians, Japanese, Chinese and the Americans have all successfully incorporated this technology into their space programs. In 2011, if everything proceeds on schedule, ISRO will attempt another cryogenic engine-propelled flight test.

Russia has supplied India with these cryogenic engines in the past and the next two GSLV flights will use these Russian-built engines, but ISRO considers mastery of this cryogenic technology, which involves super-cooled propellants, as extremely vital to ISRO's future plans to make very low-cost satellite launches a reality. ISRO has frequently declared that it is intent upon offering satellite launch services at bargain rates, but since its first successful launch of an Italian satellite in 2007, ISRO's campaign to become one of the world's top satellite launch service providers has progressed much more slowly than expected.

Antrix Corp Ltd - the commercial development arm of India's Department of Space - offers civilian launch services via both its existing GSLV and its Polar Satellite Launch Vehicle (PSLV). Antrix has already established an alliance with the European satellite consortium, EADS Astrium.

The PSLV is designed to launch payloads weighing up to 1.6 tons into so-called sun synchronous orbits, and it simply lacks the raw power or lift capacity necessary to carry typical communications satellites which can often weigh four tons or more deeper into space. This altitude is needed so these satellites can be stationed in their permanent orbital slots around the earth - 36,000 kilometers above the equator.

The same is basically true for the existing GSLV, which also is hindered by its carrying capacity. It can only accommodate satellites weighing 2.2 tons or less, which is why India is developing the GSLV-D3 and its successors to serve as India's heavyweight class of launch vehicles capable of lifting satellites and other payloads weighing four tons or more.

India's next launch attempt - a PSLV mission - was to take place in mid-May. However, in late April, ISRO postponed it and the new launch date has not been announced. The plan calls for PSLV-C15 to launch an Indian earth observation satellite named Cartosat-2B. Besides Cartosat-2B, an Algerian satellite known as Alsat, two Canadian tiny, so-called nano-satellites and a "Studsat" which is a one-kilogram satellite created by Indian university students, will make the trip, too.

Despite the GSLV-D3 loss, ISRO and Antrix remain active and seemingly unchanged by this experience. In order to accurately gauge how this incident has impacted ISRO, and to better assess ISRO's current overall status, Asia Times Online reached out to two experts on the Indian space program.

Professor Asif Siddiqi at Fordham University in New York is writing a book on the Indian space program. He is also one of the co-authors of "The Future of Human Spaceflight: Objectives and Policy Implications in a Global Context", which was produced last year as part of the American Academy of Arts and Sciences project entitled, "Reconsidering the Rules of Space".

Bharath Gopalaswamy, a researcher at the Stockholm International Peace Research Institute's Arms Control and Non-proliferation Program, specializes in space security with a principal focus on India's civilian and military space programs.

Siddiqi views the loss of the GSLV-D3 as clearly having a psychological impact on ISRO personnel.

"ISRO has been surging recently with very ambitious plans and expectations that called for some unrealistic schedules. The GSLV-D3 failure will curb some of the lofty rhetoric coming out of ISRO in recent years," said Siddiqi. "The failure of the cryogenic engine has a more direct impact on the payloads manifested for the GSLV in the near future as well, particularly the GSAT satellites."

It has been widely reported that ISRO is definitely disappointed and that this represents a setback. However, ISRO had a backup plan in place involving Russian cryogenic engines that were obtained long before the GSLV-D3 headed for its launch pad.

"The setback primarily is because if this launch had been successful, it would have enabled India to launch its own communication satellites, its first manned space flight (now scheduled for 2017) and the Chandrayaan 2 lunar probe in 2012," said Gopalaswamy. "The decision to revert back to using Russian boosters is a prudent one. India has two scheduled launches of GSLV for the fiscal year 2010-2011 and it is quite doubtful if the indigenous cryogenic engines would be ready by then. Hence, this has to be considered a prudent if not an inevitable decision."

Siddiqi describes cryogenic engines as "notoriously hard to troubleshoot and it may make sense for ISRO to invite Russian cooperation to investigate the failure".

"From what I have heard there are conflicting accounts of exactly what happened. If it is discovered that the main engine did not ignite at all as some reports suggest, this will be a big setback," said Siddiqi. "If the engine ignited even for one second as other reports suggest, this would be relatively speaking good news."

The fact that ISRO has taken nearly 20 years to develop its own indigenous cryogenic engine is not the issue here. Instead, the real issue is that all of the other nations who now possess this capability were able to attain this level of competence much quicker than ISRO.

"So, on the one hand, we should be impressed that ISRO has joined such a select club, but on the other hand, the long development time indicates a general trend in ISRO programs involving chronic delays," said Siddiqi.

That said, Siddiqi considers ISRO to be a relatively robust organization that has achieved most of the goals it has set out to achieve, although almost none of its goals have been achieved on time. This is neither unusual nor exceptional. Routine delays and constant rescheduling are common to most of the world's space programs.

"ISRO has mastered technological systems that put it on par with the 'second tier' states such as the European Space Agency and Japan and [with respect to remote sensing, for example] on par with the best in the world," said Siddiqi. 

Continued 1 2  


India and US build stronger ties in space (Aug 7, '09)


1. Russia-Ukraine pact leaves EU all at sea

2. Peace that could happen (but won't)

3. Cambodian lessons for South Korea

4. Revelations of a Thai crisis mediator

5. US-Iran standoff edges to critical juncture

6. Deeper unity lurks in Confucian embrace

7. Showdown looms in North Waziristan

8. Yuan-linked inflation ahead

9. Regulatory Stooges

10. India deal could kill health lifeline

(24 hours to 11:59pm ET, Apr 28, 2010)

 
 



All material on this website is copyright and may not be republished in any form without written permission.
© Copyright 1999 - 2009 Asia Times Online (Holdings), Ltd.
Head Office: Unit B, 16/F, Li Dong Building, No. 9 Li Yuen Street East, Central, Hong Kong
Thailand Bureau: 11/13 Petchkasem Road, Hua Hin, Prachuab Kirikhan, Thailand 77110